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0. Introduction

This paper provides a stability study of a wide class of difference
approximations fc’:r a hyperbolic mixed initial-boundary value problem in
the qua.rtez.' plane x>0, t > 0. The approximated differential system ;
is u .

t
interact at the boundary. For the difference approxima.t'ion we consider

= Aux where A 1is diagonal, and the inflow and outflow unknowns

general dissipative explicit two-level schemes, with general boundary
conditions which determine the boundary values in terms of outflow values
at interior points. We show that such boundary conditions may have
arbitrary degree of accuracy. This is included in Section 1.

In Section 2 we begin to discuss stability. We show that the entire
approximation is stable if and only if the scalar g:omponents of its out-
flow part are; thus reducing the stability question to that of a scalar
outflow problem. From that point on, our aim will be to obtain easily
checkable sufficient stability criteria for the reduced problem. All our

results are scheme-independent and are given exclusively in terms of the

outflow boundary conditions. The only such result that we ‘know of, is
due to Kreiss ([3]; see also [1]) who proved that for dissipative
schemes, boundary extrapolation always maintains stability.

In the remainder of Section 2 we state our ms:in result and consider
several examples. The main result is for the case where the ocutflow
boundary conditions are translatory, i.e., determined at all boundary

points by the same procedure. The result states that if the outflow

boundary conditions are generated by a solvable stable scheme, then the

entire spproximation is stable, independently of the interior scheme.

The examples considered show that if the outflow boundary conditions are

generated by oblique extrapolation, by explicit or implicit Euler schemes,
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’ or by the Box-Scheme, then overall stability is assured.

In Section 3 we derive a preliminary scheme-independent result,

vhich is an explicit interpretation of Kreiss' determinantal stab:llit'y

criteria [k]. This result, which seems to be: of independent interest, 1 4
is used in Section 4 to derive our stability criteria for the case of :
translatory btoundary conditions.

The theoretical basis for our work was given by Kreiss [4] and by

Gustafsson, Kreiss and Sundstrm [2]. We assume that the reader is
familiar with these papers.
In a forthcoming paper we discuss the extension of our results to

nondissipative and multi-level schemes.

We are grateful to Bjorn Engquist for many helpful discussions.

1. The Difference Approximation

Consider a first order hyperbolic system of partial differential

equations
(1.1a) dufdt = Adufdx, x>0, t>0,

vhere u = (u(l)(x,t),...,u(n)(x,t))' is the transposed vector of un-
knowns, and A is a constant nxn Hermitian matrix of the form

Al o
A= , A <o, A¥ 5 0.
i i

Without restriction we may assume that A is diagonal.

(1.1v) u(x,0) = f(x), x>0,
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and boundary conditions

(1.1¢) u'(0,t) = su'¥(0,t) + g(t),  t>0,

are prescribed. Here the partition

.

o - (u(l),...,u(‘))', . (u(u-l)’ (n))'

...,u

corresponds to that of A, and S is an g x (n-g) rectangular matrix.

To solve the initial-boundary value problem (1) by a difference
approximation we introduce e mesh-size h=Ax>0, k=A%t > 0, such that
A = k/h = constant. Using the standard notation v (t) = v(vh,t), we

approximate (1.la) by a consistent two-sided difference scheme of the form

Vv(t + k) = Q‘Tv(t), Vs PyPleeay
(1.2a) f} :
- J
J=-r
with initial values
(loab) vv(o) - rv, V= 0,1,2,... .
The AJ are fixed diagonal nxn matrices dependingon A and on A
such that A-r’ Ap are nonsingular.

Throughout the paper we assume that scheme (1.2a) is dissipative, i.e.,
for some & > 0 eand positive integer w, the eigenvalues 6(t) of the
amplification matrix

6;(5) - % Adeidg’ T<ELT,

J=-r
satisfy

lote)| <1 - 8]¢|>




Since the AJ are diagonal, dissipativity guarantees that the scheme .
(1.2a) is stable.

In order to uniquely determine the solution of (1.2), we must spec-
ify, at each time step, the r boundary values vu(t), u=0,1,.00,r-1,
For the outflow unknowns we do it by boundary conditions of the form

(1.3) Eo cs) v:f_d(t +X) = )'30 cﬁg)vifd(t), FTL e, .

qu being fixed diagonal (n-g)x(n-g) matrices. For the inflow part
we use the physical boundary condition

(1.4a) vo(t) = Svgi(t) + g(t)
together with r-1 additional conditions of the form
(1.4) vﬁ(t) - .1%0 D qu:;I(t) + 8,(4), PR S =

where l)“‘1 are fixed 4 x (n-g) matrices and the g“(t) depend on h
and on g(t).

It is well known that using conditions of the general form (1.3),
one can achieve at the boundary arbitrary degrees of accuracy. We note
that this is true also for conditions of type (1.4b). 1In fact; if accuracy
of order d is desired, then using the differential system and (1l.1lc),
we find that a Taylor expansion of a smooth solution of (1.1) yields
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“lIl(t) = % .(.E!).d. '&J— “I(ost) + °(hd+l)

3 J 1.3 1 a+l
= ’t h
33) .(%?_ (A™) ft-;a u” (0,t) + 9( )

d 3 J
. T -(P-'l?i (a5 (s 25 W7 (o,t) + —"-3 g(t)] + o(n®*Y)
w0 ¥ atd at

J=0

d 3 3
" : Bxd at

Thus,(1.4b) follows upon approximating aJ/BxJun(o,t) by linear combina-

tions of “51 (t),...,uil(t) of the right accuracy.

For example, if vi(t) is required to second order of accuracy,

may use

sull(o,8) _ =39 (&) + bu’(e) - wil(t) s2uT(0,8) _ Vo (¥) -2up (£)+

we

uz (t)

x ch 2 3x one

to obtain a second order accurate boundary condition

vi(t) = Deval(t) + Dyvit(t) + Dyvil(t) + g (¢),
where
Dp = Mg-BMtF My Dy =AMy, D=3 M+ My
My = (aly~d S(AII)J,. 1=0,2,2,
By (4) = a(e) + n(AD)™ &(e) + D)2 we).

2, Statement of Main Result and Examples

The difference approximation is completely defined now by the dissi-

pative (stable) scheme (1.2) together with the boundary conditions (1.3),

(1.4), and we raise the question of overall stability in the sense of

Gustafsson et al. ([2], Definition 3.3).
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Since the AJ are diagonal, we can split the scheme (1.2a) into
its inflow and outflow parts,

[

(2.1) | vz(t + k) = vaﬁ-rAg v:‘_d(t), Ve ryrtlyee.,
and :

I II _II
(2.2) vi (t + k) = J-f-:r AJ vwd(t)’ Vo= Ty,rHlye.,
where

A} 0
A, = o AII ’ -Tr < 11 5 P,

J
corresponds to the partition of A. We immediately see that the outflow

problem (2.2), (1.3) is self contained, while the inflow problem (2.1),

(1.4) depends on the outflow part only to the extent that the outflow

computations provide the inhomogeneous boundary values in (1.4). Thus,

stability of the entire approximation is equivalent to the following

separate questions:

(a) Stability of the inflow probl‘em (2.1) with mhmbgeneous boundary
values.

(b) stability of the outflow problem (2.2) (1.3).

Since the stability definition (3.3) of (2] gives bounds for the
‘inhomogeneous boundary values, it suffices, for the outflow problem, to
consider homogeneous boundary velues. Th? Ag are diagonal, hence the
problem splits into ¢ independent dissipative approximations with
homogeneous boundary values. It was shown by Kreiss ([3], Theorem 5) that
such scalar approximations are stable independently of the basic scheme.
Thus the inflow problem is stable and it remains to eona:lder (b). Since
I1

the A

5 of (2.2) and the cud of (1.3) are disgonal, the outflow prob-

lem splits as well.
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We conclude that approximation (1.2) - (1.4) is stable if and only
if the n-¢ scalar components of its outflow part are stable. So,

from now on, we may restrict the stability discussion to the following
scalar case where we approximate an initial-value problem

(2-3) %-:- = & %, a>0, x 20, t>0, “(1,0) " f(x),

by a consistent dissipative scheme

vv(t + k)= vi(t), v = r,r+l,...,
(2.4a)
J
15 J-g-r o B, = Yy

together with initial values

(aohb) VV(O) = fv, Ve 0’1’2,000,

and boundary conditions
& Ax - (o
(2.5) EO ct(ld)vu*"d(t + k) = .Eo et(td)vu*'d(t)’ M= 0yeaayr-l.

Here the ‘3 and the ¢ are constants depending on a and on .

Our purpose is to pmrov:lde easily checkable sufficient stability
criteria for the approximation (2.4)(2.5) which depend entirely on the
boundary conditions (2.5). Particularly effective criteria of that
nature are obtained when the boundary conditions are translatory, i.e.,

of the form

® s
(2.6) 32-30 cgl)vu+d(t+At) = .1?0 cgo)v"ﬂ(t), Re Oyeeeyr=l,

where the c.1 are independent of ju. In order to state our main result
we introduce the boundary-scheme

T e
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T(l) Vv(t + k)= T(o) Vv(t), ve0,+1,+42,...,

(2.7)

v+l

(@) 4 'r(“)(x) = 2'3 4;’)1:‘, @ =01, EV =V
3=0

which generates the boundary conditions (2.6) upon restriction of v to
m Vll\lel 0,1,...,!‘-1. d J
We call the boundary scheme stable if it is stable when applied to all

grid points vh, -® < v <w, This leads to

THEOREM 2.1 (The Main Theorem). Approximation (2.4)(2.6) is

stable if the boundary-scheme (2.7) is stable and if

" .
(2.8) T(l)(u) g T cgl) K9 F o v x| < 1.
J=0
The stability criterion in this theorem is independent of the basic

scheme. The proof, as well as other scheme-independent results for the
translatory case, are given in Section k4.

Often, the boundary-scheme is known in advance to be stable. Thus,
in applying Theorem 2.}, it only remains to verify the solvability-
condition (2.8).

If the boundary conditions are explicit, i.e., of the form

8
(2.9) vu(t +k)= Eo ey vuﬂ(t), = 0yeaa,r=l,

then 'r(l)(u) & 1. Hence (2.8) is automatically fulfilled and Theorem 2.1

reduces to

COROLIARY 2.2, If the boundary conditions (2.9) are gemerated by a
stable scheme, then approximation (2.4)(2.9) is stable.

EXAMPLE 1. Determine the boundary conditions by oblique extrapolation:




B e SRR S < T

(2.10) vt +E) = v (b), b= 0yeea,r=1

- Clearly, tRe generating boundary-scheme is explicit and unconditionally

stable; so by Corollary 2.2 the stability of (2.4)(2.10) is assured.
Note that (2.10) is inconsistent with the differential equation
(2.3) unless Xa = 1 in vhich case (2.10) coincides with our next example.

EXAMPIE 2. Let the boundary conditions be generated by the right-
sided explicit Euler scheme, i.e.,

(2.1) vu(t + k)= v“(t) + h[v“_._l(t) - vu(t)], u=0,ee.,r-1.

Since the basic scheme (2.4a) must satisfy the Courant-Friedrichs-Levi
condition Aa < 1, Euler's scheme is stable too, and by Corollary 2.2
the stability of (2.4)(2.11) follows.

EXAMPLE 3. Take

(2.12) vu(t +k) - h[vml(t +k) - vu(t +k)] = vu(t),

H.= 0,...,!‘-1,

which is generated by the right-sided unconditionally stable implicit ‘

Euler scheme. To comply with Theorem 2.1, we must have
T(l)(n)il-h(n-l)fo Vv x| < 1. ;
Since Aa > 0, then «x with |k| <1 gives

Re T(l)(n) =1+ (1l - Re k) > 1,

so (2.5)(2.12) is stable.

EXAMPLE 4. We use the unconditionally stable Box-Scheme to generate ]




(2.13) vu(t + k) + vm_l(t + k) - h[vw_l(t + k) - vu(t + k)]

= V“(t) + vp-l-l(t) + h[vp-l-l(t) = v“(t)]’ % =0;..9 r-1.

Since ; ; y

ReT(l)(n)=1+Ren+M(l-Ren)>0 Vv x| <1,

then by Theorem 2.1 again, (2.4)(2.13) is stable.
In view of the previous stability discussion, Examples l-4 imply that

if the boundary conditions (1.3) are generated by oblique extrapolation,

explicit or implicit right-sided Euler schemes, or by the Box-Scheme, then

the entire approximation (1.2) - (1.4) is stable.

The boundary conditions in Examples 1l-4 were studied by Gustafsson

et al. [2] and by SkBllermo [5] in combination with specific 3-point basic

schemes.

3. A Preliminary Determinental Criteria

In order to investigate the stability of (2.4), (2.5) we introduce

the space za(h) of all grid functions

ve (w1 with  |wf=n 7 v |? <
viv=0 -y Y

We write the approximstion in operator form
v(t + k) b Gv(t)a

vhere G: gy(h) = g,(h) is uniquely determined by (2.lka) and (2.5).
Following Kreiss ([4], Main Theorem) we will show that G has no eigen-
values z with |z| > 1. This will suffice to assure stability both in

the sense of [4] and in the sense of Definition 3.3 of [2].
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To check the eigenvalues of G we must adopt Kreiss' recipe in
(#]: If z with |z| > 1 is an eigenvalue, then for some nontrivial

g€ ga(h), Gg = 2g. Thus, by (2.4a) and (2.5), g must satisfy the

resolvent equation .

L oo 2 b o 30 g

(3.1) 28, = 5 248

v==T
and the boundary relations

V+J .VE !‘,1‘+l,...,

{ by A

(3.2) z J%o cg)gu+d = E}o c‘(lg)guﬁ, p=04000,r-1,
The most general solution of (3.1) in ze(h) can be written as

x %l
(3.3) g, = 0231 b§0 aoﬁPoa(v)K;, | v>0.

Here the «, = na(z) s l<ack, are the distinct roots of the character-
istic equation
e
(3."’) E aJK - z = 0,
J=-r
vhich satisfy 0 < Inal < 1, each with multiplicity m, = ma(z); the
Poa(v) are arbitrary polynomials in v with deg[PoB(v)] = B; and the

Oop oT® free coefficients yet to be determined. Since (2.hka) is dissipat-

ive and consistent with (2.3), we use Lemma. 2 and part of the proof of
Lemma 7 of (4] to find that for z with |z| > 1, equation (3.%) has
precisely r roots « with 0 < Jx] <1. Thus g, of (3.3) depends on
r parameters. Substituting (3.3) in (3.2), we obtain a linear homo- a
geneous system of r equations with the r unknowns %o The system

is of the form Jg' = 0 where J = J(z) is an rxr matrix and ¢ is

the unknown vector. This yields !




IEMA 3.1 (lemma 3, (k]). z with |z| > 1 is an eigenvalue

of G if and only if det J(z) ¥ 0.
Going through the above process, we make a particular choice of the

polynomials Pos( v) that leads to an explicit expression of J which

later proves useful. We choose

-8 a (v
(3.5) Pop(v) = ry BL(g).

Inserting (3.5) in (3.3) and then in (3.2) we obtain
1

k T s
(1) _ (0) 5, (utdy, nti-P
66 B2 2L Syllpie " ag=b

= 0,...,!‘-1,

which constitutes the system Jg' = 0.

At this point we associate with the boundary conditions (2. 5) a set

of polynomial boundary-functions

(3.7) b (2,x) = .1%0 [zcﬁ;‘) L cﬁg)]n“‘“d, W TN N
Since
P (2,0) DD (e L (0 gy (wtdy -
bna =0 (Th | TH) B o

then system (3.6) may be written as

_ k %ot 3o (2,
(3.8) 2 2 —LB__-—-cw- o, u-o,.o.,r'lo‘
o=l P=0 ok

(o]
Thus the coefficient matrix J takes the form

(3.92) J = [B(zs"ltml):'"oB(za"k»“k)]

where the B(”"a’ma)’ l<agk, are rxm, blocks given by
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13 .
(3.9v)
fogtey 1 [ %9 bt Bo(2s6) T
3('!“@“‘&) = bl(!,N) ’ §; b]_(z:") peleey By bl(z,n)
. : dk :
[[0r-2 (8:8)] RESLLL P r1 (29)] e

Defining a partition of r to be any set of positive integers [mi}‘:__l

which satisfies ml+ e +mN = r, we state

THEOREM 3.2. Approximation (2.4)(2.5) is stable if for every =z

with |z| > 1, every partition {mi}l:_l of r, and every set of distinct

values {"1});.-1 wth 0 < |k | <1,
(3.10) det[B(z,nl,ml),...,B(z,nN,mN)] ¥ 0.

Proof. Take an arbitrary Z0

l<ack, be the distinct roots of (3.1), each with multiplicity na(zo).

with Izol > 1 and let x.(z,),

Since [ma(zo)]:_l is a partition of r, then (3.10) holds for our Zo
na(zo) and na(no). Thus, by Lemma 3,1, #;, is not an eigenvalue of G,
and by Kreiss Main Theorem in [4], stability follows.

S8ince the determinant in (3.10) depends entirely on the boundary functions
(3.7), Theorem 3.2 is scheme-independent. Thus in applying the theorem,one

avoids the inherent difficulty of solving the characteristic equation (3.4).

4. Translatory Boundary Conditions

In this section we return to consider the approximation (2.4)(2.6) where

the boundary conditions are translatory.

The boundary-functions associated with (2.6) are

T
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b"(:,n) = 'éo (acgl) - ego))n"ﬁ, ue=0,e00,r-l.

Thus writing b(z,x) = bo(:,x) we have
bu("") = ¥ b(z,x), : veOye.s,r-l.

Consequently, if ["1]!:.-1 is a partition of r, then the rxr matrix

(k.1) [B('onlanl)v'-oB(’»""o‘.)]
in (3.10) is given by the rxmy blocks
i b(z,x) G 8 b(z,x) ] ¥ b(z,x) 7
& b(z,«) k b(z,«) w St B v(z,x)
B(':"iﬁmi) - - ’ 5% E v":':']'i'.I E
- - K -
i} K ]‘b(z,n)‘ L K l'b(z,x)‘ : Kk ‘.l'b(z,n)‘L _—

The fact that (4.1) is determined now by the single boundary-function
b(z,x), implies the following significant simplification of Theorem 3.2.

THEOREM 4.1. Approximation (2.4)(2.6) is stable if for

every z with [z >1 and «x with 0 < |x| <1, we have 1
(4.2) b(z,x) = 5.:0 (zcgl) ~ c§°))nd ¢ 0.
Proof. Take an arbitrary z with |z| > 1, 'a partition (m,J}
of r, and distinct values x,, 1<1<N, with 0 < |x| <2 1In
order to prove stability, it suffices, by Theorem 3.2, to verify (3.10).
For this purpose, let

-t

n‘l‘ b(z,x;)

r-l

(4.3) z v,

u=0 . 'N-l ‘“
-9—;1-‘:1 (ry B(2smp)]
Oy

o

=0,




! be a vanishing linear combination of the rows of (4.1). The vector

relation in (4.3) consists of r scalar equations,

r-1 J ] 1
{ ) v - [x" b(z,x)] - =0, 1l<igN, 0535“1'1’ i
u=0 33 aKJ ) ""‘1 ‘ ;

which we write as

aJ r-1
(4.4) ——J{b(z:") [ zZ v Ku]} sy 1<1i<N 0<J< m, - 1.
ok u=0 H K=K

Since 0 < |x1| < 1, then by hypothesis, the expression in the left
brackets of (4.4) satisfies 5

[b(zak)lngki £ 0, l1<i¢h

Thus, expanding (4.4) by Leibniz' rule and using induction on J >0,

we find that the sum in (4.4) have vanishing derivatives at « = kys Lo,

dreet
—F[E'Yu”] =0, 1<igN,0<y<m -1,
dx" | u=0 K=Ky

We conclude that the polynomial
r-1l

Pk) 2 T v «M,
=0 M

which is of degree r-1 at most, has r roots; Ky l<i<N, each with
multiplicity m, . Hence, P(x) = 0 and the coefficients 'yu must vanish.
By (4.3), therefore, the rows of (4.1) are linearly independent, so (3.10)
holds, and stability follows.

Before turning to the proof of the Main Theorem (Theorem 2.1) we note
that Theorem 4.1 applies also to single-leveled boundary conditions. For
example, we can immediately obtain the following result of Kreiss (3] (see
also (1]): Let the boundary conditions be determined by extrapolation of

arbitrary degree s-1, i.e.,

T Y R N S TS TS S VTR
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g p
(%.5) :)?0 (3)('1) vu+.‘l(t) =0, M= 0yessyr-1,
The associated boundary-function is
s
30 = =T (0N - ),
J=0
Thus b(k) # 0 for 0 < |k| <1, and by Theorem k.1, (2.4)(4.5) is stable.

Proof of Theorem 2.1. The amplification factor T(&) of the boundary-

scheme (2.7) is given by
ie) = ¥, HD() = (elt), a-o,0
By (2.8) ve have #(1)(¢) £ 0, thus () is well defined. Since the
boundary-scheme is stable then |(¢)| <1, so finally
(4.6) 150 (e)| < 1#M(0)] # 0 V.
The boundary-function associated w:lth. (2.6) satisfies
b(z,k) = a%o (zcgl) ‘ c§°))n‘j = 21 () - {0 (y).
8o, for |z| > 1, we use (4.6) to find that
Ia(z,e™®)] = larD(ett) - 2(Oelty| o (280 - 40

> Izl + 1#D(e)] - 180 (e)] > 0. -
That is, the equation

(%.7) b(z,x) = 0 with |z| > 1,

has no roots «x with |n| = 1. Since the roots of (4.7) are continuous
functions of 2z, we conclude that the number of x with |«x| <1 is

fixed for |z| > 1, and can be determined by considering large values of
|z]. writing (4.7) in the form




() - 270 - 0,

we let |z| -« and use (2.8) to find that (4.7) has no roots in the unit
disc. In other words, if |z| >1 and b(z,n) =0, then x must satisfy
|| > 1. By continuity therefore, if |z| > 1 and b(z,x) = 0, then

le| > 1; d.e.,

b(z,x) #0, Vilz| 21, |«| <1

This implies (4.2), and Theorem 4.l completes the proof.
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